If it's not what You are looking for type in the equation solver your own equation and let us solve it.
37=x^2/(4900-70x)
We move all terms to the left:
37-(x^2/(4900-70x))=0
Domain of the equation: (4900-70x))!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
-70x)!=-4900
x!=-4900/1
x!=-4900
x∈R
-(x^2/(-70x+4900))+37=0
We multiply all the terms by the denominator
-(x^2+37*(-70x+4900))=0
We calculate terms in parentheses: -(x^2+37*(-70x+4900)), so:We get rid of parentheses
x^2+37*(-70x+4900)
We multiply parentheses
x^2-2590x+181300
Back to the equation:
-(x^2-2590x+181300)
-x^2+2590x-181300=0
We add all the numbers together, and all the variables
-1x^2+2590x-181300=0
a = -1; b = 2590; c = -181300;
Δ = b2-4ac
Δ = 25902-4·(-1)·(-181300)
Δ = 5982900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5982900}=\sqrt{4900*1221}=\sqrt{4900}*\sqrt{1221}=70\sqrt{1221}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2590)-70\sqrt{1221}}{2*-1}=\frac{-2590-70\sqrt{1221}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2590)+70\sqrt{1221}}{2*-1}=\frac{-2590+70\sqrt{1221}}{-2} $
| 84b=12-3 | | 2(f+3)=8f+14/ | | x+x+0.24+x+0.24+0.25=8.65 | | 84=6(y−70 | | 84=6(y−70) | | 2+5(3u-2)=-2(4-2)+7u | | 2x+38=6x+6 | | 6-7x=-9x+18 | | j+195=10 | | 2x(x+5)-x^2+7=x^2-(3x-5/3) | | 3+3b=15 | | 2/3a=11 | | 19=1+3u | | 5x-1=14x-4 | | d/4+16=17 | | 9m=29,4 | | -4(3y-2)+8y=2(y+3) | | x+53=76 | | 2-s/3=2 | | -4(-7y+8)-7y=5(y-8)-4 | | 3(x-5)=126/14 | | (7+6)x=20 | | -6u+32=-8(u-3) | | 4(w-3)=-2w+6 | | x+13-2x=9 | | 6x+3=7x-44 | | 438.4+65.7x=4384-153.5x | | v4+ 2=5 | | -4w-20=-8(w+3) | | v.4+ 2=5 | | 28=6(u+4)-2u | | 3/5y=-6 |